

Electronic Stamp Project

Software Design Specification

Version: 1.2

Date Created: 2003.10.24

 - ii -

Signatures

Date Revision Approved By

List of Contributors

Name Initials Organization E-Mail
Nikhil Bandodkar NB Seminole Software bandodka@cs.fsu.edu
Jidong Long JL Seminole Software jidolong@cs.fsu.edu
Chuck Weddle CW Seminole Software weddle@cs.fsu.edu

Change History

Revision Date Description
1.0 2003.10.24 Initial Revision
1.1 2003.10.30 Second Revision
1.2 2003.11.07 Third Revision

 - iii -

Preface

This document presents the Software Design Specification for the Electronic Stamp project by
Seminole Software. The major sections of the document address the system decomposition by
module, concurrent process, and data entity. The system dependencies are also described.

Section 2, Decomposition Description, gives a view of the whole system design including
concurrent processes and data entities that are common amongst all system modules. An
important discussion of how the E-Stamp modules extend the existing Pooka email client
software is included this section. This discussion includes a UML Class Diagram that depicts the
entire system.

Section 4, Interface Description, goes into detail about the user interface for each module of the
E-Stamp software. This is followed by an important discussion of the processes implemented in
logic for each module of the system.

Section 5, Detailed Design, extends the design discussion found in Section 2 and describes the
design for each system module in more detail. A UML Class diagram is included for each module
design discussion. This is followed by a description of the data requirements for each module
and the design of those data elements.

 - iv -

Table of Contents

1 Introduction..1
1.1 Purpose ..1
1.2 Scope ...1
1.3 Definitions and Acronyms...1
1.4 References ...1

2 Decomposition Description ..2
2.1 Module Decomposition ...2
2.2 Concurrent Process Decomposition ...2
2.3 Data Decomposition ...2

3 Dependency Description..4
3.1 Inter-module Dependencies..4

3.1.1 Independent Modules ..4
3.1.2 Dependent Modules ..4

3.2 Inter-process Dependencies...4
3.3 Data Dependencies ..4

4 Interface Description..6
4.1 Module Interface...6

4.1.1 E-Stamp Configuration Module Description.....................................6
4.1.2 E-Stamp Vendor Module Description ..7
4.1.3 E-Stamp Manager Module Description..8
4.1.4 E-Stamp Sending E-Mail Module Description................................10
4.1.5 E-Stamp Receiving E-Mail Module Description10

4.2 Process Interface..11
4.2.1 E-Stamp Configuration Process Description11
4.2.2 E-Stamp Vendor Process Description ...11
4.2.3 E-Stamp Authentication Process Description11
4.2.4 E-Stamp Manager Process Description...12
4.2.5 E-Stamp Sending E-Mail Process Description12
4.2.6 E-Stamp Receiving E-Mail Process Description............................12

5 Detailed Design ...14
5.1 Module Detailed Design..14

5.1.1 E-Stamp Provider ..14
5.1.2 E-Stamp Configuration Module Detailed Design15
5.1.3 E-Stamp Vendor Module Detailed Design15
5.1.4 E-Stamp Authentication Module Detailed Design..........................16
5.1.5 E-Stamp Manager Module Detailed Design17
5.1.6 E-Stamp Sending E-Mail Module Detailed Design18
5.1.7 E-Stamp Receiving E-Mail Module Detailed Design......................19

Appendix A – EStamp Class Diagram ..20

 - v -

List of Figures

Figure 1, Data Flow Diagram ..5
Figure 2, Configuration Module, E-Stamp Config Menu..6
Figure 3, Configuration Module, E-Stamp Vendor Name......................................6
Figure 4, Configuration Module, E-Stamp Vendor Information7
Figure 5, Configuration Module, E-Stamp Sender Information7
Figure 6, Vendor Module, Contacting Vendor...8
Figure 7, Vendor Module, Stamp Purchase Success..8
Figure 8, Manager Module, Manager Menu..8
Figure 9, Manager Module, Sending Configuration...9
Figure 10, Manager Module, Receiving Configuration ..9
Figure 11, Sending E-Mail Module, E-Stamp Menu..10
Figure 12, Receiving E-Mail, E-Mail with E-Stamps Indicator10
Figure 13, Receiving E-Mail, E-Stamp Options...11
Figure 14, E-Stamp Provider Class Diagram ..14
Figure 15, E-Stamp Configuration Module Class Diagram15
Figure 16, E-Stamp Vendor Module Class Diagram ...15
Figure 17, E-Stamp Authentication Module Class Diagram16
Figure 18, E-Stamp Manager Module Class Diagram...17
Figure 19, E-Stamp Sending E-Mail Module Class Diagram18
Figure 20, E-Stamp Receiving E-Mail Module Class Diagram............................19

List of Tables

Table of Definitions, Acronyms, and Abbreviations...1
Table of References..1

Seminole Software Software Design Specification

 - 1 -

1 Introduction

1.1 Purpose

The purpose of the Software Design Specification is to describe the specific design of the
Electronic Stamp software by Seminole Software. The design specification includes an overview
of the design along with software module decomposition.

This document provides a detailed description of each software module’s design. For each
module, a user interface design and class diagram design is given. As well, a process
description is described for each module. It is in the process description that the details of what
logic will need to be implemented are given.

1.2 Scope

It is within the scope of the Software Design Specification to describe the specific system design
of the Electronic Stamp project. This would include user interface design, object-oriented class
design, process design, and data design. Any specific detail that is needed about the standards
or technology used to design the software are within the scope of this document.

It is outside the scope of this document to describe electronic mail systems and technology or the
general problem with unwanted electronic mail. It is also outside the scope of this document to
describe in any detail at all how certain mentioned standards or technologies work and operate.

1.3 Definitions and Acronyms

Table of Definitions, Acronyms, and Abbreviations

Definition, Acronym, or Abbreviation Description
SDS Software Design Specification.

1.4 References

Table of References

References Description
Software Development Plan The Software Development Plan from the

Electronic Stamp project was referenced.

Software Requirements Specification The Software Requirements Specification from
the Electronic Stamp project was referenced.

Seminole Software Software Design Specification

 - 2 -

2 Decomposition Description

2.1 Module Decomposition

The E-Mail Client Software has been decomposed into the following modules.

• E-Stamp (Vendor) Configuration Module: This module collects data from the user to be
used for establishing communication with the vendor.

• E-Stamp Vendor Module: This module communicates with the vendor over the Internet. It
also obtains the stamp from the vendor.

• E-Stamp Authentication Module: This module authenticates an E-Stamp received by the
E-Mail client.

• E-Stamp Manager Module: This module collects information (data) regarding stamp
purchase and orientation of the stamp (whether single use, multi use or return use). It
also allows the user to manage the stamp book.

• Sending E-Mail Module: This module uses SMTP protocol to send e-mail. It also
determines if a new stamp is required if a stamp is not available.

• Receiving E-Mail Module: This module receives e-mail, sorts it and places it in separate
folders depending on whether they are stamped or unstamped.

2.2 Concurrent Process Decomposition

The E-Stamp Project consists of two major components, the E-Mail Client and the Vendor. This
team shall design the E-Mail Client. The design of the vendor software is out of the scope of the
current team’s task.

A complete view of the project suggests that there are two processes, the vendor process and the
E-Mail client process. The E-Mail client process communicates with the vendor process to obtain
an E-Stamp. These two processes run concurrently and only exchange information when the E-
Mail client process requires a stamp.

2.3 Data Decomposition

The following are the two major data components, the E-Stamp Purchase Information and the
Electronic Stamp.

E-Stamp Purchase Information: This is a database that contains the following data items;
Vendor Name: A string-containing name of vendor. Used only for identification of a vendor by the
user.

• Vendor URL: The vendors URL.
• Password: A Password to obtain access to the Vendors website.
• Senders E-Mail Address.
• Senders Credit Card Information: For purchase of E-Stamp.
• Stamp Orientation: Whether Single Use, Return Use or Multi Use.
• Receivers E-mail address.

The Electronic Stamp: This is a data structure that is attached with the outgoing email. It contains
the following data.

Seminole Software Software Design Specification

 - 3 -

• Vendors name: For identification of vendor so that the receivers E-Mail client can obtain
vendors public key if it does not already have one.

• Senders E-Mail address.
• Receivers E-mail address.
• Orientation of the stamp.
• Digital signature of all the above information.

Seminole Software Software Design Specification

 - 4 -

3 Dependency Description

3.1 Inter-module Dependencies

3.1.1 Independent Modules

The following modules are independent and do not rely on any other modules to initiate them or
to provide data.

• E-Stamp (Vendor) Configuration Module.
• E-Stamp Manager Module.

3.1.2 Dependent Modules

The following modules are dependent on one another for their functioning.

• E-Stamp Vendor Module: This is the communication module. This module is executed
only when the Sending E-Mail Module calls it. For The E-Stamp Vendor Module to
complete its function it must interact with the E-Stamp (Vendor) Configuration Module
and the E-Stamp Manager Module.

• E-Stamp Authentication Module: This module is executed when the Receiving E-Mail
Module calls it.

• Sending E-Mail Module: This module depends on the E-Stamp vendor module for its
successful completion.

• Receiving E-Mail Module: This module depends on the E-Stamp Authentication Module
for its successful completion.

3.2 Inter-process Dependencies

As described earlier the two main processes are the E-Mail client process and the Vendor
process. The email client process depends on the vendor process only for obtaining stamps. This
is the only dependency between the two processes. Please reference Appendix A for a full class
diagram of the E-Stamp classes.

3.3 Data Dependencies

The following Data Flow Diagram shows the data dependencies between the various entities and
modules.

Seminole Software Software Design Specification

 - 5 -

Figure 1, Data Flow Diagram

Seminole Software Software Design Specification

 - 6 -

4 Interface Description

4.1 Module Interface

4.1.1 E-Stamp Configuration Module Description

4.1.1.1 User Interface Design

Figure 2, Configuration Module, E-Stamp Config Menu

Figure 3, Configuration Module, E-Stamp Vendor Name

Seminole Software Software Design Specification

 - 7 -

Figure 4, Configuration Module, E-Stamp Vendor Information

Figure 5, Configuration Module, E-Stamp Sender Information

4.1.1.2 Description

The E-Stamp Configuration User Interface can be accessed via the main menu under the
heading ‘Electronic Stamp’. The UI in figure 4 allows the user to provide information regarding a
new E-Stamp vendor. In figure 4 the user provides the Vendors URL and password. Finally, in
figure 5 the user provides his primary e-mail address and credit card information for the E-Stamp
transaction.

4.1.2 E-Stamp Vendor Module Description

4.1.2.1 User Interface Design

Seminole Software Software Design Specification

 - 8 -

Figure 6, Vendor Module, Contacting Vendor

Figure 7, Vendor Module, Stamp Purchase Success

4.1.2.2 Description

The following figures show the user interfaces for this module. The interfaces are non interactive
and only show the status of the stamp purchase process from the vendor.

4.1.3 E-Stamp Manager Module Description

4.1.3.1 User Interface Design

Figure 8, Manager Module, Manager Menu

Seminole Software Software Design Specification

 - 9 -

Figure 9, Manager Module, Sending Configuration

Figure 10, Manager Module, Receiving Configuration

4.1.3.2 Description

The User Interfaces allow the user to define actions to be performed by the software to automate
the sending of stamped e-mail and receiving a stamped e-mail. The UI in figure 9 asks for
actions to be performed by the system while sending out an e-mail. This UI provides the user four
options. Based on the option selected by the user the system sends an e-mail with a single use
stamp, a return use stamp, a multi use stamp or no stamp at all.

The UI in figure 10 deals with actions to be performed upon receiving a stamped e-mail. The
stamped e-mail may be placed in a particular folder and unstamped mail may be placed in the
same or different folder specified by the user. The stamp book is a collection of multi use or return

Seminole Software Software Design Specification

 - 10 -

use stamps from people, from whom the user has approved receipt of e-mail. The user may
revoke stamps by removing the incumbent stamps from his stamp book.

4.1.4 E-Stamp Sending E-Mail Module Description

4.1.4.1 User Interface Design

Figure 11, Sending E-Mail Module, E-Stamp Menu

4.1.4.2 Description

If the user has not already configured the E-Stamp Manager, the circled area will allow the user to
select various stamp options. Alternatively it also allows the user to send unstamped email if a
stamp is not already available. However if the E-Stamp Manager has been configured then the
circled list box will highlight the default options.

4.1.5 E-Stamp Receiving E-Mail Module Description

4.1.5.1 User Interface Design

Figure 12, Receiving E-Mail, E-Mail with E-Stamps Indicator

Seminole Software Software Design Specification

 - 11 -

Figure 13, Receiving E-Mail, E-Stamp Options

4.1.5.2 Description

The UI for this module is limited to allow the user to reject the stamp or add it to his stamp book
as shown in figure 13. By default the stamp will be added to the stamp book.

4.2 Process Interface

4.2.1 E-Stamp Configuration Process Description

The primary objective of this module is to obtain Vendor contact information and access
password. It is assumed that the user has created an account with the vendor via the vendor’s
website. The user also provides information required to purchase stamp such as his e-mail
address and credit card information. The software stores all this information in a database.

The information entered in the present module is used by the E-Stamp vendor module when it
has to purchase an E-Stamp from the vendor via the internet.

4.2.2 E-Stamp Vendor Process Description

The Stamp Vendor Module is the software’s communication module. It uses http to communicate
with the Vendor over the internet. This module uses the vendor contact information from the E-
Stamp Config module. It also takes data from the E-Stamp Manager Module regarding the
reusability of the E-Stamp. The module then communicates with the vendor over the internet and
procures a stamp. This stamp is stored in the Stamp Book to be attached with outgoing E-mail.

4.2.3 E-Stamp Authentication Process Description

The E-Stamp Authentication Module gets a stamp from the Receiving E-Mail module. This
module obtains the vendor public key from its public key database. The module then verifies the
stamps digital signature. If the signature is authentic then the stamp is deemed as Authentic. If
the public key for the vendor is not available in the database, the module proceeds to obtain the
vendors public key from a public directory. The authentication data is passed on to the receiving
e-mail module.

Seminole Software Software Design Specification

 - 12 -

4.2.4 E-Stamp Manager Process Description

The primary objective of the E-Stamp Manager module is to collect information to automate the
process of e-stamp attachment to outgoing e-mail without persistent user interaction and to save
received e-mail at a user convenient location. Options selected in the Sending configuration are
passed on to the Sending E-Mail module along with persisting data from the E-Stamp Config
module.

While receiving e-mail the software must sort stamped and unstamped e-mail into different
folders or if the user chooses, place both in the same folder. This information is obtained from the
current module and passed on to the receiving e-mail module. The user may also manage his
stamp book by revoking stamps from certain senders or alternatively electing to keep those
stamps. The revoked stamps are then logged in the revoked stamp database. This information is
used by the receiving e-mail module and forms the basis upon which a stamped email whose e-
stamp has been revoked is put in a folder separate from the valid stamp e-mail.

While sending an e-mail, the user enters the receivers e-mail address. The software checks the
stamp book for available stamps for the receiver. The information contained in this stamp book is
edited using the UI shown in figure 4.3.

4.2.5 E-Stamp Sending E-Mail Process Description

This module follows the following sequence of actions.

1. When either compose or reply action is performed the compose/edit e-mail interface
comes up.

2. The module checks the settings in the Stamp Manager Module and accordingly sets the
“Send E-mail with ….” Option.

3. When user performs the send action, the module checks stamp book for available
stamps.

4. If no stamps are available and e-mail is selected to be stamped, the module passes
receiver e-mail address to the stamp purchase module.

5. The module obtains stamp from the stamp purchase module attaches it to the e-mail and
sends it.

4.2.6 E-Stamp Receiving E-Mail Process Description

The Receive E-Mail Module controls the receipt of E-Mail. It follows the following sequence of
actions.

1. An E-mail is received. Check if E-Mail is Stamped or Unstamped.
2. If unstamped, use data provided in the Stamp Manager Module to place the e-mail in a

particular folder.
3. If stamped, check if the stamp is present in the stamp book or has been revoked. If

present in stamp book or revoked stamp database, place the e-mail in the folder specified
in the Stamp Manager Module.

4. If stamp is not present in either, obtain stamp and pass this data to the authenticate
stamp module.

5. If stamp is authentic place the e-mail in the folder specified in the Stamp Manager
Module.

6. If the stamp is not authentic send message to the sender informing him/her that the
message was not delivered.

Seminole Software Software Design Specification

 - 13 -

7. For all e-stamped messages display the alphabet ‘E’ along with the e-mail in the inbox.

When the user opens the e-mail, he has the option of rejecting the stamp or adding the stamp to
stamp book. After exiting this module the stamp will either be in the stamp book or logged as
revoked.

Seminole Software Software Design Specification

 - 14 -

5 Detailed Design

5.1 Module Detailed Design

5.1.1 E-Stamp Provider

5.1.1.1 Design

+...()
+main()
+...()

-estampProvider : EStampProvider
Pooka

+EStampProvider()
+getStampConfiguration() : VendorConfiguration
+setStampConfiguration(in stampConfig : VendorConfiguration)
+getStampManager() : EStampManager
+setStampManager(in stampManager : EStampManager)
+getAvailableVendor() : EStampVendor
+getStampAuthenticator() : EStampAuthenticator
+setStampAuthenticator(in stampAuthenticator : EStampAuthenticator)

-vendorConfig : VendorConfiguration
-stampMgr : EStampManager
-stampAuthenticator : EStampAuthenticator

EStampProvider

1 1

Figure 14, E-Stamp Provider Class Diagram

5.1.1.2 Design Description

The EStampProvider class deserves special attention because it is the central class to all of the
other EStamp classes. As shown in the UML in the figure above, the Pooka class, which
contains the main() method that is immediately called on Pooka application startup, instantiates
the one and only EStampProvider class used in the system.

The EStampProvider class has a containment relationship with three other important EStamp
Classes; VendorConfiguration, EStampAuthenticator, and EStampManger. A description of each
one of these classes follows. Singleton instances of these three classes make up the most
important attributes to the EStampProvider class. Please notice that these are shown as
attributes in the EStampProvider UML class definition in the figure above.

One particular public method exposed on EStampProvider that needs explanation is
getAvailableVendor(). This method is used to return to the caller an EStampVendor, which is
described below, that will use the VendorConfiguration object to either get the vendor that the
user has specified as a default or possibly a vendor of a specific name.

Seminole Software Software Design Specification

 - 15 -

5.1.2 E-Stamp Configuration Module Detailed Design

5.1.2.1 Design

+EStampProvider()
+getStampConfiguration() : VendorConfiguration
+setStampConfiguration(in stampConfig : VendorConfiguration)
+getStampManager() : EStampManager
+setStampManager(in stampManager : EStampManager)
+getAvailableVendor() : EStampVendor
+getStampAuthenticator() : EStampAuthenticator
+setStampAuthenticator(in stampAuthenticator : EStampAuthenticator)

-vendorConfig : VendorConfiguration
-stampMgr : EStampManager
-stampAuthenticator : EStampAuthenticator

EStampProvider

+VendorConfiguration()
+getDefaultVendor() : EStampVendor
+getVendorByName() : EStampVendor
+getAllVendors() : collection
+addVendor(in vendor : EStampVendor)

VendorConfiguration

1 1

Figure 15, E-Stamp Configuration Module Class Diagram

5.1.2.2 Design Description

The EStampProvider constructor will instantiate one instance of the VendorConfiguration class.
The VendorConfiguration class is a manager of EStampVendor objects. Internally,
VendorConfiguration handles persisting EStampVendors and retrieving already configured
EStampVendors in persistent storage.

Some of the more important methods exposed by VendorConfiguration are getDefaultVendor()
and addVendor(). The method getDefaultVendor() will return to the caller an EStampVendor that
is the default vendor specified by the user in the EStamp Config UI dialog. addVendor() takes as
an argument a new EStampVendor that is to be persisted. The main caller of addVendor() is the
EStamp Config UI dialog but it just as easily be called from any other part of the system if other
ways to configure vendors became available.

5.1.3 E-Stamp Vendor Module Detailed Design

5.1.3.1 Design

+StampVendor()
+purchase()
+getVendorName() : string
+setVendorName(in name : string)
+getVendorURL() : string
+setVendorURL(in URL : string)
+getVendorPassword() : string
+setVendorPassword(in password : string)
+getSenderAddress() : string
+setSenderAddress(in address : string)
+getSenderCreditCard() : string
+setSenderCreditCard(in creditCard : string)

-vendorName : string
-vendorURL : string
-vendorPW : string
-senderEmail : string
-senderCC : string

EStampVendor

Figure 16, E-Stamp Vendor Module Class Diagram

Seminole Software Software Design Specification

 - 16 -

5.1.3.2 Design Description

The EStampVendor class is instantiated when needed. As mention in the section above, the
VendorConfiguration class handles the processing of the EStampVendor objects during system
runtime.

The EStampVendor contains the vendor name, URL, and PW as private attributes as well as the
sender email and credit card information. With this information, a vendor can be uniquely
identified and used for purchasing a stamp. The methods exposed by this class do not warrant
explanation, for they are all simply mutators and accessors for the private attributes.

5.1.4 E-Stamp Authentication Module Detailed Design

5.1.4.1 Design

+EStampProvider()
+getStampConfiguration() : VendorConfiguration
+setStampConfiguration(in stampConfig : VendorConfiguration)
+getStampManager() : EStampManager
+setStampManager(in stampManager : EStampManager)
+getAvailableVendor() : EStampVendor
+getStampAuthenticator() : EStampAuthenticator
+setStampAuthenticator(in stampAuthenticator : EStampAuthenticator)

-vendorConfig : VendorConfiguration
-stampMgr : EStampManager
-stampAuthenticator : EStampAuthenticator

EStampProvider

+StampAuthenticator()
+authenticate(in stamp : EStamp) : boolean

EStampAuthenticator

1 1

Figure 17, E-Stamp Authentication Module Class Diagram

5.1.4.2 Design Description

The EStampProvider constructor will instantiate one instance of the EStampAuthenticator class.
The EStampAuthenticator class authenticates EStamps as the name implies. Internally,
EStampAuthenticator handles the decrypting the EStamp with the vendor’s public key.

Some of the more important method exposed by EStampAuthenticator is authenticate(). Again,
as the name implies, this method with authenticate the EStamp passed in as a method
parameter. The caller will examine the Boolean result returned from authenticate() as to whether
this EStamp was valid or not.

Seminole Software Software Design Specification

 - 17 -

5.1.5 E-Stamp Manager Module Detailed Design

5.1.5.1 Design

+EStampProvider()
+getStampConfiguration() : VendorConfiguration
+setStampConfiguration(in stampConfig : VendorConfiguration)
+getStampManager() : EStampManager
+setStampManager(in stampManager : EStampManager)
+getAvailableVendor() : EStampVendor
+getStampAuthenticator() : EStampAuthenticator
+setStampAuthenticator(in stampAuthenticator : EStampAuthenticator)

-vendorConfig : VendorConfiguration
-stampMgr : EStampManager
-stampAuthenticator : EStampAuthenticator

EStampProvider

+StampManager()
+ifRejected(in stamp : EStamp) : boolean
+ifUsedBefore(in stamp : EStamp) : boolean
+isStampAvailable(in recipient : string) : EStamp
+logAsUsed(in stamp : EStamp)
+logAsMultiUse(in stamp : EStamp)
+logAsReplyUse(in stamp : EStamp)
+logAsRejected(in stamp : EStamp)

EStampManager

-_1

1

-_1

1

Figure 18, E-Stamp Manager Module Class Diagram

5.1.5.2 Design Description

The EStampProvider constructor will instantiate one instance of the EStampManager class. The
EStampManager class is a manager of EStamp objects. Internally, EStampManager handles
logging the EStamp with a particular attribute, for example multiuse. This class also takes care of
the details of manipulating the EStamp database for such activities as determining if a stamp has
been rejected already.

Some of the more important methods exposed by EStampManager are ifRejectedStamp() and
isStampAvailable(). The method ifRejectedStamp() will determine if a stamp has already been
rejected. The caller will examine the Boolean result returned to determine whether this EStamp
has been rejected. isStampAvailable() will be used to determine if a valid EStamp already exists
for use for the recipient passed in as a parameter. The call will receive the valid EStamp for that
recipient if one is available.

Seminole Software Software Design Specification

 - 18 -

5.1.6 E-Stamp Sending E-Mail Module Detailed Design

5.1.6.1 Design

+...()
+send()
+...()

NewMessageProxy

1 1

+EStampProvider()
+getStampConfiguration() : VendorConfiguration
+setStampConfiguration(in stampConfig : VendorConfiguration)
+getStampManager() : EStampManager
+setStampManager(in stampManager : EStampManager)
+getAvailableVendor() : EStampVendor
+getStampAuthenticator() : EStampAuthenticator
+setStampAuthenticator(in stampAuthenticator : EStampAuthenticator)

-vendorConfig : VendorConfiguration
-stampMgr : EStampManager
-stampAuthenticator : EStampAuthenticator

EStampProvider

+VendorConfiguration()
+getDefaultVendor() : EStampVendor
+getVendorByName() : EStampVendor
+getAllVendors() : collection
+addVendor(in vendor : EStampVendor)

VendorConfiguration

1 1

+StampVendor()
+purchase()
+getVendorName() : string
+setVendorName(in name : string)
+getVendorURL() : string
+setVendorURL(in URL : string)
+getVendorPassword() : string
+setVendorPassword(in password : string)
+getSenderAddress() : string
+setSenderAddress(in address : string)
+getSenderCreditCard() : string
+setSenderCreditCard(in creditCard : string)

-vendorName : string
-vendorURL : string
-vendorPW : string
-senderEmail : string
-senderCC : string

EStampVendor

+StampManager()
+ifRejected(in stamp : EStamp) : boolean
+ifUsedBefore(in stamp : EStamp) : boolean
+isStampAvailable(in recipient : string) : EStamp
+logAsUsed(in stamp : EStamp)
+logAsMultiUse(in stamp : EStamp)
+logAsReplyUse(in stamp : EStamp)
+logAsRejected(in stamp : EStamp)

EStampManager

1
1

-_11
-_11

Figure 19, E-Stamp Sending E-Mail Module Class Diagram

5.1.6.2 Design Description

The Pooka class NewMessageProxy has a method called send() that handles the sending of a
message. It is here that the EStampProvider will be referenced to retrieve the EStampManager
singleton and call isStampAvailable(). If a stamp is available for the recipient specified in the new
message, then it is used. If not, then EStampProvider is referenced to retrieve the
VendorConfiguration singleton and call getDefaultVendor(). Once the default EStampVendor has
been retrieved, then purchase() will be called to actual get a stamp.

Notice that NewMessageProxy only has a shared reference to EStampProvider, which is
indicated in the above UML diagram by the white diamond. The EStampProvider is contained in
the Pooka class.

Seminole Software Software Design Specification

 - 19 -

5.1.7 E-Stamp Receiving E-Mail Module Detailed Design

5.1.7.1 Design

+...()
+showMessages()
+...()

MessageProxy
+EStampProvider()
+getStampConfiguration() : VendorConfiguration
+setStampConfiguration(in stampConfig : VendorConfiguration)
+getStampManager() : EStampManager
+setStampManager(in stampManager : EStampManager)
+getAvailableVendor() : EStampVendor
+getStampAuthenticator() : EStampAuthenticator
+setStampAuthenticator(in stampAuthenticator : EStampAuthenticator)

-vendorConfig : VendorConfiguration
-stampMgr : EStampManager
-stampAuthenticator : EStampAuthenticator

EStampProvider

1 1

+StampAuthenticator()
+authenticate(in stamp : EStamp) : boolean

EStampAuthenticator

1
1

+Stamp()
+getReceiverName() : string
+setReceiverName(in name : string)
+getReceiverAddress() : string
+setReceiverAddress(in address : string)
+getSenderName() : string
+setSenderName(in name : string)
+getSenderAddress() : string
+setSenderAddress(in address : string)
+getVendor() : string
+setVendor(in vendor : string)
+getSerialNumber() : string
+setSerialNumber(in serialNumber : string)
+getSignature() : string
+setSignature(in signature : string)
+getPath() : string
+setPath(in path : string)
+getUsagePattern() : string
+setUsagePattern(in usagePattern : string)
+getExpirationDate() : string
+setExpirationDate(in expirationDate : date)

-receiverName : string
-receiverAddress : string
-senderName : string
-senderAddress : string
-path : string
-serialNumber : string
-expireDate : string
-vendor : string
-signature : string
-usagePattern : string

EStamp

Figure 20, E-Stamp Receiving E-Mail Module Class Diagram

5.1.7.2 Design Description

The Pooka class MessasgeProxy has a method called showMessages() that is used to display
the messages within the UI. It is here that the EStampProvider will be referenced to retrieve the
EStampAuthenticator singleton so that the unauthenticated EStamps contained on new email
may be determined if they are valid or not using the authenticate method.

Seminole Software Software Design Specification

 - 20 -

Appendix A – EStamp Class Diagram

Seminole Software Software Design Specification

 - 21 -

+...()
+main()
+getEStampProvider() : EStampProvider
+setEStampProvider(in estampProvider : EStampProvider)
+...()

-estampProvider : EStampProvider
Pooka

+...()
+show()
+send()
+...()

MessageProxy

+EStampProvider()
+getStampConfiguration() : VendorConfiguration
+setStampConfiguration(in stampConfig : VendorConfiguration)
+getStampManager() : EStampManager
+setStampManager(in stampManager : EStampManager)
+getAvailableVendor() : EStampVendor
+getStampAuthenticator() : EStampAuthenticator
+setStampAuthenticator(in stampAuthenticator : EStampAuthenticator)

-vendorConfig : VendorConfiguration
-stampMgr : EStampManager
-stampAuthenticator : EStampAuthenticator

EStampProvider

11

1
1

+StampVendor()
+purchase()
+getVendorName() : string
+setVendorName(in name : string)
+getVendorURL() : string
+setVendorURL(in URL : string)
+getVendorPassword() : string
+setVendorPassword(in password : string)
+getSenderAddress() : string
+setSenderAddress(in address : string)
+getSenderCreditCard() : string
+setSenderCreditCard(in creditCard : string)

-vendorName : string
-vendorURL : string
-vendorPW : string
-senderEmail : string
-senderCC : string

EStampVendor

+StampAuthenticator()
+authenticate(in stamp : EStamp) : boolean

EStampAuthenticator

1

1

+VendorConfiguration()
+getDefaultVendor() : EStampVendor
+getVendorByName() : EStampVendor
+getAllVendors() : collection
+addVendor(in vendor : EStampVendor)

VendorConfiguration

1

1

+StampManager()
+ifRejected(in stamp : EStamp) : boolean
+ifUsedBefore(in stamp : EStamp) : boolean
+isStampAvailable(in recipient : string) : EStamp
+logAsUsed(in stamp : EStamp)
+logAsMultiUse(in stamp : EStamp)
+logAsReplyUse(in stamp : EStamp)
+logAsRejected(in stamp : EStamp)

EStampManager

1
1

1
1

+Stamp()
+getReceiverName() : string
+setReceiverName(in name : string)
+getReceiverAddress() : string
+setReceiverAddress(in address : string)
+getSenderName() : string
+setSenderName(in name : string)
+getSenderAddress() : string
+setSenderAddress(in address : string)
+getVendor() : string
+setVendor(in vendor : string)
+getSerialNumber() : string
+setSerialNumber(in serialNumber : string)
+getSignature() : string
+setSignature(in signature : string)
+getPath() : string
+setPath(in path : string)
+getUsagePattern() : string
+setUsagePattern(in usagePattern : string)
+getExpirationDate() : string
+setExpirationDate(in expirationDate : date)

-receiverName : string
-receiverAddress : string
-senderName : string
-senderAddress : string
-path : string
-serialNumber : string
-expireDate : string
-vendor : string
-signature : string
-usagePattern : string

EStamp

1 *

1
*

1

*

